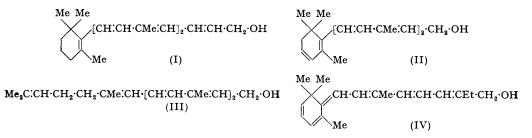
[1952]

503. Studies in the Polyene Series. Part XLIII.* The Structure and Synthesis of Vitamin A₂ and Related Compounds.


By (MRS.) K. R. FARRAR, J. C. HAMLET, H. B. HENBEST, and E. R. H. JONES.

A dehydrovitamin A_1 (II) has been synthesized and shown to be identical with vitamin A_2 . The aldehyde (retinene₂) and anhydrovitamin A_2 , both crystalline solids, have been prepared from the synthetic vitamin. The ultra-violet and infra-red light absorption properties of these and related compounds with shorter side-chains are discussed. A preliminary account of this work has been published (*Chem. and Ind.*, 1951, 49).

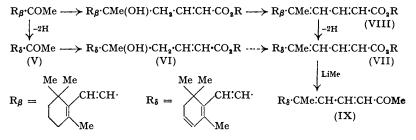
THE presence in fish-liver oils of a compound closely related to vitamin A_1 was first indicated by light-absorption measurements by Edisbury, Morton, and Simpkins (*Nature*, 1937, **140**, 234) and Gillam, Heilbron, Lederer, and Rosanova (*ibid.*, p. 233). Certain oils or concentrates gave an antimony trichloride colour which exhibited maximal absorption at 6930 Å, the corresponding vitamin A_1 maximum being at 6200 Å. The new compound, which could not be separated from vitamin A_1 , was termed vitamin A_2 by Morton and his co-workers. The ratio of the two vitamins present in fish oils varies according to species, but, in general, oils from freshwater fish contain more vitamin A_2 than A_1 , the converse being true for marine fish (cf. Gillam, Heilbron, Jones, and Lederer, *Biochem. J.*, 1938, **32**, 405).

From these studies with vitamin A_2 concentrates it was apparent that the main lightabsorption maximum of vitamin A_2 is located at a considerably longer wave-length than that of vitamin A_1 (3260 Å). Recently, Shantz (*Science*, 1948, **108**, 417) has obtained from the oil from selected pike livers a sample of the vitamin of high purity, which has a main absorption band at 3510 Å, and a well-defined subsidiary maximum at 2870 Å (see Fig. 1).

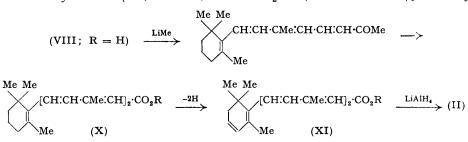
The difficulty of obtaining pure vitamin A_2 has hampered work on the elucidation of its structure, but nevertheless several formulæ have been suggested. Gillam, Heilbron, Jones, and Lederer (*loc. cit.*) noted that structure (I), a vinylogue of vitamin A_1 , would account for the absorption of vitamin A_2 at longer wave-length. Gray and Cawley (*J. Biol. Chem.*, 1939, **131**, 317; 1940, **134**, 397) suggested a dehydrovitamin A_1 structure (II), after a study of the relative volatilities of the two vitamins had indicated their similar molecular weights; this formula has also been favoured by Morton, Salah, and Stubbs (*Nature*, 1947, **159**, 744). Karrer and his collaborators (*Helv. Chim. Acta*, 1943, **26**, 1758, and earlier references) put forward the open-chain structure (III), in the belief that the position of the main absorption maximum would be in better accord with this structure than with (II), and adduced support from the isolation of acetone in over 60% yield on ozonolysis of a vitamin A_2 concentrate. Karrer and Schneider (*ibid.*, 1950,

33, 38) later reported that a purer sample of vitamin A_2 did not yield acetone on ozonolysis. After an attempt to correlate the light-absorption data of carotenoids with their structures, Fieser (*J. Org. Chem.*, 1950, **15**, 930) proposed the rather more speculative structure (IV).

In view of the difficulty of obtaining sufficient quantities of pure vitamin A_2 for detailed structural studies, it seemed to us that the vitamin A_2 problem could best be solved by


synthesis, especially since a variety of satisfactory procedures have been developed in connection with the synthesis of vitamin A_1 (for a summary see Heilbron, J., 1948, 386). The dehydrovitamin A_1 structure (II) appeared to be the most plausible on various grounds, particularly since it affords an explanation of the second absorption band at 2870 Å (see later).

The first approach attempted was from 3: 4-dehydro- β -ionone (V), following one of the now classical routes to the C₂₀ alcohol devised in the A₁-series starting from β -ionone. The ketone, prepared in 40% yield from β -ionone by treatment with N-bromosuccinimide followed by dehydrobromination (Henbest, J., 1951, 1074), was treated with methyl γ -bromocrotonate, giving a hydroxy-ester with light absorption in agreement with the expected structure (VI). However, dehydration with toluene-p-sulphonic acid (as in the preparation of the C₁₇ acid from β -ionone) gave material with an absorption maximum at too short a wave-length for the expected ester (VII; R = Me) (see later) and hydrolysis


failed to yield a crystalline acid. It is possible that 1:8-dehydration (into the terminal ring) occurred, giving rise to a tetraene chromophore.

An alternative procedure involved the bromination and dehydrobromination of the well-known methyl ester (VIII; R = Me) of the C_{17} acid, and the building up of the sidechain via the C_{18} dehydro-ketone (IX). The ester reacted very much more readily than β -ionone with N-bromosuccinimide, bromination occurring at room temperature. Dehydrobromination was carried out with 4-phenylmorpholine, structurally related to diethylaniline, but more readily purified. Hydrolysis of the methyl ester gave the

crystalline C_{17} dehydro-acid (VII; R = H) in 55% overall yield, converted by methyllithium into the C_{18} dehydro-ketone (IX). Although a Reformatsky reaction between this ketone and methyl bromoacetate appeared to occur (the crude hydroxy-ester showing λ_{max} . 3300 and 2700 Å), no crystalline C_{20} dehydro-acid (XI; R = H) could be isolated after dehydration and hydrolysis.

In view of the difficulties encountered in building up the side-chain with the terminal dehydro-ring already present, attention was directed towards the introduction of the extra double bond with the C_{20} acid (X; vitamin A₁ acid; Arens and van Dorp, *Rec. Trav. chim.*, 1946, **65**, 338) as its methyl ester (now obtained crystalline). The *N*-bromo-succinimide reaction proceeded very readily at 0° or below in chloroform solution. Immediate dehydrobromination of the unstable bromo-compound with 4-phenyl-morpholine, followed by chromatography, gave a 75% yield of an ester, hydrolysed to the crystalline dehydro-acid (XI; R = H; vitamin A₂ acid), obtained in 25% overall yield.

With diazomethane this acid gave a crystalline methyl ester (presumably all-transconfiguration of the side-chain), the light absorption of which was almost identical with that of the chromatographically purified ester from the dehydrobromination reaction. The latter ester, however, could not be induced to crystallize and is probably a mixture of geometrical isomers—this would also account for the low yield of the pure vitamin A_2 acid produced on hydrolysis. Some experiments, in which bromination had been incomplete, gave a mixture of esters of vitamin A_1 and A_2 acids, which could not be separated chromatographically.

TABLE 1. Comparison of the light-absorption properties of compounds in the A_1 and A_2 series.

	4					
	A ₁ S	eries	A_2 (Dehyd	ro) Series		
	λ_{\max} (Å)	ε _{max.}	λ_{\max} (Å)	Emax.		
C ₁₇ Acids	3250	32,500	2865	13,800		
			3615	30,000		
C ₁₇ Alcohols	2890	21,500	2690	15,700		
			3170	18,100		
C ₁₈ Ketones	3450	28,500	3035	10,300 *		
			3840	25,200.		
,, , semicarbazones	3420	60,000	2975	19,000		
•			3660	49,500		
C ₂₀ Acids	3500	43,300	3050	12,600 *		
			3725	39,300		
,, , methyl esters	3590	44,600	3080	13,100 *		
		~1 000	3770	40,600		
C ₂₀ Alcohols	3245	51,000	2880	21,900		
			3520	41,300		
*	' Inflexion.					

Lithium aluminium hydride reduction of either the crystalline or the non-crystalline methyl ester of the C_{20} dehydro-acid afforded the alcohol (II), the light absorption of which, and of its antimony trichloride colour, agreed closely in both cases with that of natural vitamin A_2 as given by Shantz (*loc. cit.*) (Table 2 and Fig. 1) (for biological activity, see Experimental). This dehydro-alcohol is very much more sensitive to oxygen than is vitamin A_1 —a similar relation was observed with other pairs of A_1 and A_2 compounds and may be connected with the possibility of forming transannular peroxides from the dehydro-compounds. The melting point of the p-phenylazobenzoate of the alcohol prepared by reduction of the crystalline ester was similar to that recorded by Shantz. However, the melting-point behaviour of the derivative prepared from the non-crystalline (but spectrographically pure) ester suggested that it was a mixture of stereoisomers. It may be noted that the melting point of *neo-* (or *cis-*)vitamin A_1 derivative. Analogous differences

2659

between the vitamin A_2 derivatives would reconcile the apparently conflicting meltingpoint data of Shantz and Karrer (see Table 2). It seems likely then that both stereoisomeric p-phenylazobenzoates were obtained from the non-crystalline ester, thus reinforcing the conclusion reached above. Lithium aluminium hydride reduction of the methyl esters of the C_{17} -acid and the C_{17} dehydro-acid gave the corresponding alcohols, characterized as p-phenylazobenzoates.

TABLE 2. Comparison between natural and synthetic vitamin A_2 and anhydro-vitamin A_2 .

		Natural			Synthetic	
A, Series.	М. р.	λ (Å)	ε	M. p.*	λ (Å)	ε
Vitamin		3510 (max.)	41,400		3520 (max.)	41,300
		2970 (min.)	16,200		2975 (min.)	15,100
		2870 (max.)	23,300		2880 (max.)	21,900
SbCl ₃ colour in CHCl ₃	_	6930 (max.)	$E_{1 { m cm.}}^{1 { m \%}} 4100$	<u> </u>	6930 (max.)	$E_{1 { m cm.}}^{1 \%} 4000$
p-Phenylazobenzoate	76—77° ¹	3410 (max.)	58,500	78—90° ³	3410 (max.)	59,500 ³
	9495 ²	<u> </u>		73—77 4	<u> </u>	<u> </u>
Anhydro-A, Series.						
Anhydro-vitamin	89.5^{1}	3350 (infl.)	27,000	87—88	3350 (infl.)	27,500
2		3520 (max.)	54,400		3515 (max.)	54,400
		3700 (max.)	79,500		3700 (max.)	81,000
		3910 (max.)	69,700		3915 (max.)	73,000
SbCl ₃ colour in CHCl ₃	—	6930 (max.)	$E_{1\%}^{1cm.}$ 4400		6930 (max.)	$E_{1\%}^{1 \mathrm{cm.}} 4500$

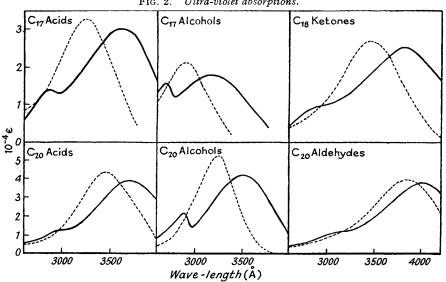
¹ Shantz (loc. cit.). ² Karrer and Schneider (loc. cit.). ³ Prepared from non-crystalline dehydroester. 4 Prepared from crystalline dehydro-ester.

* Determined on a Kofler block; the p-phenylazobenzoate with m. p. 78—90° melted at 84—87° in a capillary tube in the usual paraffin-bath apparatus.

Vitamin A_2 , like vitamin A_1 , is very sensitive to traces of mineral acids, being converted into an anhydro-compound by loss of the elements of water. Shantz (loc. cit.) obtained crystalline anhydro-vitamin A_2 , and dehydration of the synthetic material similarly yielded anhydro-vitamin A2, the physical properties being in excellent agreement with those given by Shantz (Table 2).

Morton (*Nature*, 1944, 153, 69) suggested that $retinene_1$ and $retinene_2$, which had been isolated from retinal tissue of marine and freshwater fish respectively, might be the aldehydes corresponding to vitamins A_1 and A_2 . He later showed that they could be readily prepared by oxidation of the vitamins with a suspension of manganese dioxide in light petroleum (Ball, Goodwin, and Morton, Biochem. J., 1948, 42, 516; Morton, Salah, and Stubbs, loc. cit.). Manganese dioxide oxidation of synthetic vitamin A₂ (prepared via the crystalline dehydro-ester) afforded crystalline retinene₂, agreeing closely in its properties with those of the aldehyde prepared from the natural vitamin (cf. Table 3). Synthetic retinene₂ readily formed an oxime and a 2:4-dinitrophenylhydrazone, corresponding derivatives also being prepared from retinene₁ for comparison. The oximes, which

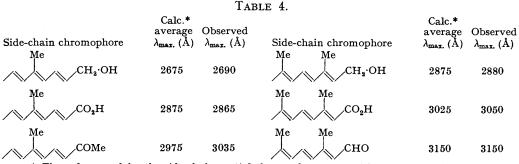
Table 3.	Melting points and light absorption (in ethanol) of retinene $_1$ and retinene $_2$	
	and their derivatives.	


	М. р.	λ_{\max} (Å)	ε _{max} .	M. p.	$\lambda_{\text{max.}}$ (Å)	ε _{max} .
	R_{ℓ}	etinene ₁ serie	es.	Re	tinene ₂ serie	s.
Retinene	6465°	3850	40,300	77—78°	3150 * ‡	11,800
					4000	38,000
	(61—62)	(3855)	(39,800)	[77—78]	[3150] *	[—]
					[4000]	[39,500]
Oxime	134136	3590	57,800	141-143	3080	16,100
					3775	53,400
2: 4-Dinitrophenylhydrazone	214215°	4510 +	50,100	197-199	4620 +	46,300
1 5 5	(207 - 208)	(4420)	(54,000)			-
SbCl, colour in CHCl,	7300	$\rightarrow 7050$ H	$\Xi_{1cm.}^{1\%}$ 3750			
					\rightarrow 7050]	[3720]

Data in parentheses are those reported by Ball, Goodwin, and Morton (*Biochem. J.*, 1948, 42, 516). Data (unpublished) in square brackets were kindly provided by Professor R. A. Morton, the retinene₂ having been prepared from natural vitamin A₂. * Inflexion. * Light absorption in chloroform solution.

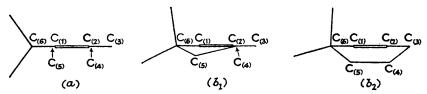
‡ Further light absorption data for this compound are given in the Experimental section.

crystallized well and were formed in good yields are the most satisfactory type of derivative of these polyene carbonyl compounds. The position of the main absorption maximum of retinene₂ 2: 4-dinitrophenylhydrazone is in accordance with those of polyene aldehyde and ketone derivatives with fewer double bonds, this series obeying the usual $\lambda^2 \propto n$ relation. However, care was necessary in order to prepare a derivative with the correct absorption spectrum, since longer periods of contact with the reagent solution or simple heating of a solution (e.g., in ethyl acetate) of the derivative caused the position of λ_{max} to move to shorter wave-lengths. The analytical composition of the derivative had undergone no change, but the melting point was markedly lower (163-167°). It appears that the material described as retinene, 2:4-dinitrophenylhydrazone by Morton, Salah, and Stubbs (loc. cit.) was in fact the foregoing isomerization product—the physical constants are in reasonable agreement (cf. Experimental section).


Oppenauer oxidation of vitamin A_1 concentrates with diethyl ketone as the hydrogen acceptor was reported by Howarth, Heilbron, Jones, Morrison, and Polya (J., 1939, 128) to yield a carbonyl compound for which a dehydro-vitamin A_1 aldehyde (*i.e.*, now retinene₂)

Broken curves : compounds of vitamin A_1 series. Full curves : compounds of vitamin A_2 series.

structure was suggested. A similar oxidation of retinene, has been reported to give the same product (Morton, Salah, and Stubbs, loc. cit.). Repetition of these experiments has shown that the compound formed is the (crystalline) C₂₅ ketone produced by condensation of the initially formed retinene, with diethyl ketone—further details of this and related experiments will be reported in a separate communication.


Light Absorption Properties.—Introduction of the extra double bond into the terminal ring invariably moves the position of the main absorption maximum to longer wavelengths and also decreases the intensity of the main band (see Table 1 and Fig. 2). At the same time a second maximum (sometimes an inflexion) appears in the 2700-3200-Å region, its position moving towards longer wave-lengths as the length of the unsaturated side chain is increased. It is likely that this subsidiary band represents the combined absorption of two "partial chromophores" (together with the tail of the main absorption band); thus in vitamin A2 itself, the partial chromophores (see below for more detailed discussion) are the trimethylcyclohexadienyl system ($\lambda_{max} \sim 2700$ Å) and the tetraene side-chain ($\lambda_{max.} \sim 3050$ Å)—equal intensities being assumed for the two chromophores, the combined absorption would give rise to a maximum at ~ 2870 Å, close to the observed value (it is realized that the side-chain chromophore should contribute a greater share since its intensity of absorption would be expected to be greater than that of the cyclic chromophore, but more exact computations are not justified at present). Table 4 gives a comparison of the experimentally observed positions of λ_{max} of the subsidiary band with those calculated as an average of two partial chromophores, the trimethylcyclohexadienyl group being assumed in each case to "contribute" λ_{max} 2700 Å.

* The values used for the side-chain partial chromophores were either (a) those given by Braude (Ann. Reports, 1945, 42, 105) for appropriate acyclic compounds, or (b) calculated from such data by addition of 50 or 100 Å per methyl group, depending on the position of the group.

It has been suggested that, in compounds containing a trimethylcyclohexenyl ring, the effectiveness of the conjugation between the cyclic double bond and the side chain is reduced by steric factors (Braude, Jones, Koch, Richardson, Sondheimer, and Toogood, J., 1949, 1890). The chief result with the compounds examined was a reduction in absorption intensities, but some evidence was obtained of absorption due to partial chromophores produced by a break in conjugation between the ring olefinic bond and the side-chain (e.g., the absorption of β -ionone and dehydro- β -ionone in the 2200-Å region due to the side-chain C=C-C=O absorption). In more extended polyene systems the side-chain partial chromophore probably lies too close to the main band to be resolved. In this connection, Oroshnik, Karmas, and Mebane (J. Amer. Chem. Soc., 1952, 74, 295) have pointed out that the absorption bands of vitamin A_1 and its congeners are hypsochromically displaced relatively to acyclic polyenes, the observed absorption bands being in fact a combination of the complete chromophore (of reduced intensity) and the partial chromophore probable bond.

FIG. 3.

On the assumption that the side-chain is attached to the ring in the energetically more favourable *s-trans*-configuration (see also MacGillavray, Kreuger, and Eichhorn, *Kon. Ned. Akad. Wet.*, 1951, *B*, **54**, 449), the break in conjugation in the A_1 series of compounds is clearly caused by interference between the *gem*-dimethyl group and the side-chain $C_{(8)}$ -hydrogen atom. In the dehydro-series, the decrease in intensity of the main absorption band (relatively to the A_1 series), as well as the appearance of well-defined partial chromophoric bands, indicates an even greater steric inhibition of resonance.

This, it is believed, is connected with the greater rigidity of *cyclo*hexadiene rings compared with *cyclo*hexene rings. With the planar *cyclo*hexadiene ring, models confirm that appreciable "overlap" takes place between the $C_{(8)}$ -hydrogen and the *gem*-dimethyl group, the latter (regarded effectively as a single atomic grouping) being in exactly the same plane as the ring (Fig. 3*a*), and hence the side chain. In the A₁ series, the more flexible *cyclo*hexene ring can assume a skew configuration (Fig. 3*b*₁) or a form (*b*₂) similar

to the boat form of *cyclo*hexane, but in either case, the *gem*-dimethyl group is located above (or below, ready interconversion being probable) the general plane of the ring. Interference of the *gem*-dimethyl group and the $C_{(8)}$ -hydrogen atom will thus be reduced.

Infra-red Spectra.—The infra-red spectra of the compounds prepared during this investigation are presented in Table 5 (see also Fig. 4). Dr. Shantz kindly sent us (unpublished) infra-red spectra of natural vitamin A_2 and anhydro-vitamin A_2 . Close agreement was observed between the spectra of the natural and synthetic compounds.

Comparison of the A_2 with the A_1 series shows that the cyclic *cis*-double bond present in the former gives rise to absorption peaks at \sim 725 cm.⁻¹ and \sim 3030 cm.⁻¹. Some of the A_1

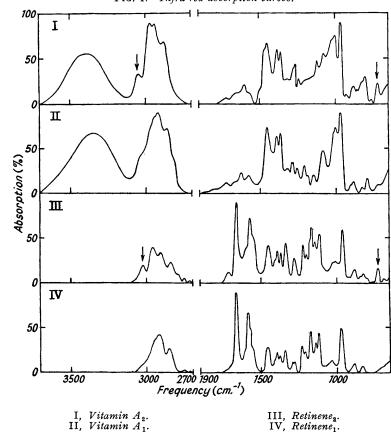


FIG. 4. Infra-red absorption curves.

compounds also showed a peak near 725 cm.⁻¹, but invariably of lower intensity; vitamins A_1 and A_2 themselves showed the smallest difference in this region. The distinct peak near 3030 cm.⁻¹ (*cis*-double bond C-H stretching frequency) shown by all the dehydro-compounds could be easily distinguished from a shoulder present in this region of the spectra of the A_1 compounds due to the C-H stretching frequency of the *trans*-disubstituted double bonds.

In the compounds containing a carbonyl group in conjugation with the polyene chain, the olefinic bond stretching frequency decreases (from 1605 cm.⁻¹ in β -ionone to 1572 cm.⁻¹ in retinene₂) as the number of double bonds increases. However, the relation between the carbonyl stretching frequency (1600—1700-cm.⁻¹ region) and the number of double bonds shows much less regularity. These results are thus parallel to those obtained with simpler unsaturated carbonyl compounds (Blout, Fields, and Karplus, *J. Amer. Chem. Soc.*, 1948, **70**, 194).

	1500 - 1400				1460 ms 1445 ms			5	٨								(1450)	0		_]			718 mw		w 678 w]]]		
	1500-	1460 mw	1465 m	1455 ms	1460 ms	1435 ms	1435 ms	1445 mw	1442 mw	1452 ms	1450 ms (1450)	1445 m	1447 m	1440 m	1438 m	1450 ms	1450 m	750 - 650		721 m		723 m	720 w	730 w	720 w	725 mw		и 720 w		726 w				v 665 w		
es.	1700 - 1500	ıs 1605 ms	5 s 1598 s	665 m	1660 m	.620 ms 1600 ms	615 ms 1592 ms	1680 m 1588 ms 1660 m 1568 ms	1675 ms 1585 ms 1655 ms 1562 ms	.620 w 1572 w	w (00	5 s 1575 ms	5 s 1572 ms	1608 m 1582 ms		1610 m $1560 mw$	1612 mw	900 - 750]	1]	1		890 w 855 w	890 w			880 w 800 mw (790)	880 w 820 w	875 w	: >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1	1	882 s 885 ms	(885) (830)	
A2 serie	ĥ	1685 n 1666 s	1665 s	1665	166(162(1615	168(166(1678 1658	162(1600 w (1600)	1655 s	1655 s	160	161(161(1612	0-900	ns	ns			ns	ns	ns	ns			ns	su		ns	su	982 ms 962 s 985 ms 968 s	(096) (
4_1 and	2800-1700	1	1	1		1710 s	1703 s]	I]	I	2705 w 2747 w	2710 w 2750 w	1708 s	1711 s	l 780 w	1780 w	1000-	980 ms	980 ms			975 ms	976 ms	970 ms			; 965 s (965)	964 ms	962 ms		965 ms	962 ms	982 ms 985 ms	(066)	
e vitamin 1	0 2800		7 m			1			2 w			100	100	1	Π	1	1	1100 - 1000]]		m 1042 ms	mw	mw]			m 1000 ms	1]		1]	mw \$1102s		page.)
ds of th	2900 - 2800	ms	2885 ms 2827 m	ms	ms	Ħ	m 2805 w	Ħ	m 2802 w	ms	sm	I E	I E	H	н	ļ	ms	11			1090 m	1087 m	1040 mw	1040 mw			1080 m	1070 m (1080)	•					1080 mw 1085 s	(1090)	pposite
unoquu	29(2873 ms	2885	2870 ms	2865 ms	2860 m	2855 m	2870 m	2875 m	2860 ms	2880 ms	2845 m 	2840 m 	2860 m	2880 m		2870 ms	-1100					1132 ms	1130 s					1112 ms	1111 ms						able on c
. ⁻¹) for co	3000 - 2900		2950 s		2930 s	6			2955 ms 2918 ms		2940 s	6	2910 m	S		2910 s	2940 s	1200 -	1177 w	1170 m		I		1146 s	1150 mw	1150 mw]	1160 ms 1112 ms	1159 ms 1111 ms		1150 s	1150 s]]		(Footnotes to Table on opposite page.)
encies (cm	3000-	2940 s	2983 s	2940 s	2960 s	2940 ms	2945 ms	2940 ms	2955 ms	2970 s	2975 s (2960)	2910 ms	2940 m	2930 ms	2960 ms	2930 s	2980 s	1200					1222 m	1221 m	1250 s	1250 s	1270 mw									(Foot:
Infra-red frequencies $(cm.^{-1})$ for compounds of the vitamin A_1 and A_2 series.	3100-3000 *]	3065 m]	3035 m		3030 m	I	3030 mw]	3050 m]	3020 mw]	$3053~\mathrm{mw}$]]	1300 - 1200	1257 s	1253 s]			-				1260 mw (1240)	1215 m	1213 m		1240 ms	1240 ms	1200 ms		(0811)
				~	~					6	10							-1300			1361 ms	1360 ms	1315 ms	1312 ms			1358 ms	1360 m	1330 m	1332 m				1360 ms 1310 mw		(1310) (1300)
TABLE 5.	3700-3100]]	3400 ms	$3380 \mathrm{ms}$]]]		3350 ms	3400 ms (3400)	 -]]]]]	1400 -	1360 ms	1361 s	1383 m	s	1360 m		• •	1360 ms		1380 ms (1390)	1381 mw 1330 m	1385 mw	1357 mw	1354 m	1355 m	1390 m	1362 m	(1390) (1360)
		1. β-Ionone	2. Dehydro-β-ionone	3. C ₁₇ -Alcohol	4. C ₁₇ Dehydro-alcohol	5. Ester of C ₁₇ acid		7. C ₁₈ Ketone	8. C ₁₈ Dehydro-ketone	9. Vitamin A ₁	10. Vitamin A ²	11. Retinene ₁	12. Retinene ₂	13. Ester of C ₂₀ acid	14. Ester of C ₂₀ dehydro-acid	15. Anhydro-vitamin A ₁	16. Anhydro-vitamin A ₂		1. <i>β</i> -Ionone	2. Dehydro- β -ionone	3. C ₁₇ Alcohol		5. Ester of C_{17} acid					10. Vitamin A ₂	11. Retinene ₁	19 Retinene.	17. INCOMPANY	13. Ester of C ₂₃ acid		15. Anhydro-vitamin A ₁ 16. Anhydro-vitamin A ₂		

Farrar, Hamlet, Henbest, and Jones :

A discussion of the structures and infra-red spectra of anhydrovitamins A_1 and A_2 is deferred.

Meunier (*Rev. internat. Vitaminologie*, 1951, **23**, 21) has claimed on the basis of qualitative ultra-violet absorption spectra and growth-promotion tests that manganese dioxide oxidation of lycopene gives rise to retinene₂, this being suggested as evidence in favour of the open-chain structure for vitamin A₂. The absorption curve given (3000—4600 Å) for the suggested retinene₂ does not exhibit the characteristic inflexion at 3550 Å, and further comment on Meunier's experiments must be deferred until the properties of pure reaction products are fully described.

EXPERIMENTAL

M. p.s were determined on a Kofler block and are corrected. Ultra-violet light absorption measurements were made in ethanol with a Beckman spectrophotometer unless stated otherwise; infra-red determinations were made with a Perkin-Elmer double-beam instrument, model 21 (sodium chloride prism), the material being used as either a liquid or a supercooled melted solid.

Chromatographic alumina (P. Spence, Grade H) was deactivated by addition of a certain amount of water, or neutralized and deactivated by addition of dilute acetic acid (10% in water)—the material then being shaken until homogeneous. The resultant free-flowing alumina was used as a suspension in light petroleum to fill columns. This method of "neutralizing" alumina proved to be very efficacious for chromatography of the methyl esters handled in this work (and also for esters generally), hydrolysis being prevented during periods up to 24 hours. Chromatography of the most sensitive compounds, such as vitamin A_2 and retinene₂, was conducted in a cold room at -8° to -10° in subdued light.

Solvents were always evaporated under reduced pressure. Light petroleum refers to the fraction with b. p. $40-60^{\circ}$. Chloroform used in the bromination reaction was freshly dried by distillation from phosphoric oxide. N-Bromosuccinimide was powdered to pass through a 125-mesh sieve. Most experiments were carried out in a nitrogen atmosphere.

Condensation of Dehydro- β -ionone with Methyl γ -Bromocrotonate.—A mixture of dehydro- β -ionone (0.57 g.), methyl γ -bromocrotonate (0.9 g.), zinc dust (0.5 g.), and dry benzene (10 c.c.) was heated under reflux. After 10 minutes, the reaction commenced; heating was then continued for a further 30 minutes. Treatment with dilute acetic acid and ice gave the crude hydroxy-ester (0.7 g.), λ_{max} . 2890 Å ($\varepsilon = 6000$) (cf. light absorption of dehydro- β -ionol, λ_{max} . 2850 Å; $\varepsilon = 8400$; Henbest, *loc. cit.*). A solution of this ester in benzene (10 c.c.) containing toluene-*p*-sulphonic acid (3 mg.) was heated under reflux for 30 minutes. The resultant gum had λ_{max} . 3350 Å ($E_{1cm}^{16} = 350$). Alkaline hydrolysis afforded no crystalline acid.

5-Methyl-7-(2:6:6-trimethylcyclohexa-1:3-dienyl)hepta-2:4:6-trienoic Acid (C17 Dehydroacid) (VII; R = H).—A solution of diazomethane in ether was added to a suspension of the C_{17} acid (5.0 g.) (prepared by the procedure given by Inhoffen, Bohlmann, and Bartram, Annalen, 1948, 561, 13) in ether at 20° until no more nitrogen was evolved. The solvent was removed, and the residue dissolved in pentane, filtration and evaporation giving the methyl ester (5.12 g.). This was dissolved in chloroform (50 c.c.) at 15° and powdered N-bromosuccinimide (3.86 g.) was then added with vigorous stirring. After 20 minutes the bromo-imide had dissolved, 4-phenylmorpholine (4.0 g.) was added, and the solution was heated under reflux for 10 minutes. Dilute hydrochloric acid and pentane were added to the cooled solution. The pentane-chloroform layer was evaporated and the residue, dissolved in pentane (10 c.c.), was chromatographed on deactivated alumina (2000 g.). The column was developed with light petroleum until separation of the bands appeared complete, the main yellow band being then cut out and eluted with ether, to give the crude dehydro-ester (4.8 g.) as a deep yellow oil. This was hydrolysed under reflux in methanolic potassium hydroxide (25 c.c.; 10% w/v) for 45 minutes. After addition of water, the non-saponifiable material was removed by pentaneextraction, and the aqueous layer acidified with dilute hydrochloric acid and extracted with pentane-ether (1:1). Evaporation gave crude acid (4.45 g.), which after recrystallization

s =Strong, m = medium, and w = weak band—these are given only as approximate indications of absorption intensity.

Values in parentheses are for natural materials; the curves from 4000 to 770 cm.⁻¹ for vitamin A_2 , and from 2000 to 770 cm.⁻¹ for anhydro-vitamin A_2 were kindly supplied by Dr. E. M. Shantz.

^{*} All the A₁-compounds (except β -ionone) showed a definite shoulder at about 3040 cm.⁻¹.

from acetone gave the C₁₇ dehydro-acid (2.8 g., 55%) as golden-yellow needles (prisms), m. p. 163—164° (Found : C, 78.75; H, 8.7. $C_{17}H_{22}O_2$ requires C, 79.05; H, 8.6%).

5-Methyl-7-(2:6:6-trimethylcyclohex-1-enyl)hepta-2:4:6-trien-1-ol (C₁₇ Alcohol).—A solution of the ester, prepared as above from C₁₇ acid (1 g.), in ether (1 c.c.) was treated at -30° with an ethereal solution of lithium aluminium hydride (4.5 c.c.; 0.55M) for 2 hours. The reaction mixture was then allowed to warm to 20°, a few drops of ethyl acetate were added, and the whole was poured into saturated aqueous tartaric acid. The product was extracted with pentane–ether (1:1), this extract being washed with sodium hydrogen carbonate solution and dried. Removal of the solvent gave an oil which was chromatographed on alumina (100 g.) (deactivated with water, 10%). Material eluted with pentane was discarded; further elution with pentane–ether (1:1) gave the alcohol (0.67 g., 75%). A portion was distilled at 95—100° (bath-temp., short-path still)/10⁻⁴ mm., to yield the pure alcohol, n_D^{25} 1.5650 (Found : C, 82.7; H, 10.5. C₁₇H₂₆O requires C, 82.85; H, 10.65%).

p-Phenylazobenzoyl chloride (0.5 g.) was added to a solution of the foregoing alcohol (0.45 g.) in benzene (5 c.c.) containing a few drops of pyridine, the mixture being kept at 20° overnight. *p*-Phenylazobenzoic anhydride was removed by filtration and the benzene solution washed with dilute acid, and sodium hydrogen carbonate solution, dried, and evaporated. The residue was chromatographed on deactivated alumina (100 g.; water, 10%), the ester being eluted with light petroleum. Evaporation afforded a red oil which crystallized from a 20% solution in pentane at -20° , to give the p-*phenylazobenzoate* as orange-red needles (0.25 g.), m. p. 37–38° (Found : C, 79.0; H, 7.5. C₃₀H₃₄O₂N₂ requires C, 79.25; H, 7.55%). Light absorption : Maximum, 3200 Å ($\varepsilon = 36,700$).

5-Methyl-7-(2:6:6-trimethylcyclohexa-1:3-dienyl)hepta-2:4:6-trien-1-ol (C₁₇ Dehydroalcohol).—C₁₇ Dehydro-acid (0.7 g.) was converted by diazomethane into its methyl ester. This was dissolved in ether (1 c.c.), and treated with lithium aluminium hydride in ether (3.25 c.c.; 0.55M) at -30° for 2 hours. After warming to room temperature, the mixture was processed as described above for the C₁₇ alcohol. Chromatographic purification gave a yellow oil (0.31 g., 50%), part of which was distilled at 100—105° (bath-temp., short-path still)/10⁻⁴ mm., to afford the C₁₇ dehydro-alcohol, $n_{\rm D}^{21}$ 1.5824 (Found : C, 83.3; H, 9.7. C₁₇H₂₄O requires C, 83.55; H, 9.9%).

This alcohol (0.15 g.) was treated with *p*-phenylazobenzoyl chloride (0.2 g.) in benzene (5 c.c.) containing a few drops of pyridine as described above. The *p*-phenylazobenzoate crystallized from pentane at -20° as an orange solid, m. p. *ca.* 10–15°. Light absorption : Maximum, 3240 Å ($\varepsilon = 33,100$); inflexion, 2730 Å ($\varepsilon = 18,700$).

6-Methyl-8-(2:6:6-trimethylcyclohexa-1:3-dienyl)octa-3:5:7-trien-2-one (C₁₈ Dehydroketone) (IX).—A solution of the C₁₇ dehydro-acid (1·4 g.) was treated with stirring with an ethereal solution of methyl-lithium (200 c.c.; 0·13N) at 20°. Ice and water were added after $\frac{1}{2}$ hour, the ethereal solution being processed as usual. Evaporation afforded a reddish-orange oil, which was purified by chromatography on alumina (200 g.) (deactivated with water, 3%). Elution with light petroleum gave the *dehydro-ketone* (0·6 g.), prepared for analysis by removal of solvent at 10⁻⁵ mm. at 20° (Found : C, 83·95; H, 9·6. C₁₈H₂₄O requires C, 84·35; H, 9·45%). The semicarbazone crystallized from methanol as deep yellow rhombs, m. p. 187—190° (Found : C, 72·95; H, 8·45; N, 13·3. C₁₉H₂₇ON₃ requires C, 72·8; H, 8·7; N, 13·4%). The 2:4-dinitrophenylhydrazone crystallized from ethyl acetate as dark red laths, m. p. 168—170° (Found : N, 12·7. C₂₄H₂₈O₄N₄ requires N, 12·85%). Light absorption (in chloroform) : Maximum, 4330 Å ($\varepsilon = 41,700$); inflexion, 3700 Å ($\varepsilon = 21,800$).

Methyl 3: 7-Dimethyl-9-(2: 6: 6-Trimethylcyclohex-1-enyl)-2: 4: 6: 8-tetraenoate (Methyl Ester of Vitamin A_1 Acid) (X; R = Me).—A solution of diazomethane in ether was added to a suspension of vitamin A_1 acid (5.4 g.) in ether until no more nitrogen was evolved. Removal of the solvent gave a residue that readily solidified. Recrystallization from methanol-water (6: 1) with cooling to -8° gave the methyl ester as yellow needles, m. p. 55—56° (Found : C, 80.3; H, 9.75. C₂₁H₃₀O₂ requires C, 80.2; H, 9.6%).

3:7-Dimethyl-9-(2:6:6-trimethylcyclohexa-1:3-dienyl)nona-2:4:6:8-tetraenoic Acid (C_{20} Dehydro-acid) (XI; R = H).—Powdered N-bromosuccinimide (1·3 g.) was added all at once to a vigorously stirred solution of the methyl ester (2 g.) of vitamin A₁ acid in dry chloroform (20 c.c.) at 0°. After about 7 minutes a brown colour developed but stirring was continued for a total of 15 minutes, the mixture being kept at 0°. 4-Phenylmorpholine (2 g.) was added and the solution heated under reflux for 5 minutes, whereafter it was poured into dilute hydrochloric acid and pentane. The pentane extract was treated in the usual way, and the product chromatographed on deactivated alumina (400 g.). The column was developed with light petroleum and, when the main yellow band had separated, the subsidiary coloured bands above it were removed with a spatula. The dehydro-ester could then be eluted rapidly with ether-light petroleum (1:1), evaporation giving an orange oil (1.48 g.) with light absorption : Maximum, 3770 Å ($\varepsilon = 38,600$). This ester was hydrolysed by heating it under reflux in methanolic potassium hydroxide (30 c.c. of 10%) for 1 hour. The reaction mixture was poured into water and, after neutral material had been removed by extraction with pentane, the solution was acidified with dilute hydrochloric acid, and the acid product isolated with ether. The residue (1.38 g.) on crystallization from acetone gave the C₂₀ dehydro-acid (0.46 g.) as orange-yellow needles, m. p. 175–177° (Found : C, 80.15; H, 9.0. C₂₀H₂₆O₂ requires C, 80.4; H, 8.8%). Ethereal diazomethane gave the methyl ester, which crystallized as fine yellow needles from a small volume of methanol cooled to -20° . After two recrystallizations the m. p. was 45–47° (Found : C, 80.3; H, 9.1. C₂₁H₂₈O₂ requires C, 80.7; H, 9.05%).

3:7-Dimethyl-9-(2:6:6-trimethylcyclohexa-1:3-dienyl)nona-2:4:6:8-tetraen-1-ol (Vitamin A_2) (II).—Crystalline methyl ester (0.224 g.) of the C_{20} dehydro-acid was dissolved in dry ether (1 c.c.), the solution then being cooled to -30° in a flask fitted with a guard-tube containing potassium hydroxide pellets. Lithium aluminium hydride in ether (1.2 c.c.; 0.45M) was then added, and the reaction mixture kept at -30° for 3 hours. It was then allowed to warm to 20° , 2 drops of ethyl acetate were added, and the mixture was treated with aqueous tartaric acid and ether-pentane (1:1). The product was chromatographed on alumina (100 g.) (deactivated with water, 10%). Elution with pentane removed unchanged ester, together with traces of aldehyde (retinene₂), the vitamin being eluted finally with ether-pentane (1:1). Evaporation gave vitamin A_2 (0.098 g.) as a yellow oil. Light absorption, see Table.

 α -Tocopherol could be added to the vitamin during its isolation and purification in order to diminish its extreme sensitivity towards traces of oxygen, which rapidly reacts with the vitamin to form a white amorphous material insoluble in light petroleum.

The reaction between the above vitamin (52 mg.) and *p*-phenylazobenzoyl chloride (60 mg.) in benzene (2 c.c.) containing a little pyridine was carried out as described for the C_{17} -alcohol derivative. After 3 recrystallizations from pentane at -20° , the *p*-phenylazobenzoate was obtained as orange needles, m. p. 73—77°.

A similar reduction of non-crystalline methyl ester (0.225 g.) [purified by chromatography after dehydrobromination of the intermediate 3-bromo-compound (see above)] with lithium aluminium hydride in ether (3.8 c.c. of 0.45M) gave, after the same isolation procedure, vitamin A₂ (0.10 g.), with the same light absorption properties. Formation of the *p*-phenylazobenzoate gave a product with m. p. 78—90° [m. p. (capillary) 84—87°] after 3 recrystallizations from light petroleum.

A solution of the (all-*trans*-)vitamin A_2 in arachis oil showed 30% of the activity of vitamin A_1 when tested on vitamin-A deficient rats—for this test we are indebted to Dr. W. F. J. Cuthbertson of Glaxo Laboratories Ltd. Shantz and Brinkmann (*J. Biol. Chem.*, 1950, 183, 467) reported that natural vitamin A_2 has 40% of the activity of vitamin A_1 .

Anhydrovitamin A_2 .—Vitamin A_2 (0.36 g.) obtained as described above from non-crystalline methyl ester was dissolved in dry methanol (5 c.c.), and dry methanolic hydrogen chloride (40 c.c.; M/30) was added. The solution was kept at 20° for 20 minutes, then water and pentane were added. The crude anhydro-compound was chromatographed on alumina (100 g.) (deactivated with water, 10%), the column being eluted with pentane. A single yellow band moved rapidly down the column; elution and evaporation afforded a yellow oil (0.25 g.). This was dissolved in pentane (1 c.c.) and filtered through a small column of alumina (0.2 g.). The solution was cooled to -30° and kept at this temperature for 5 hours, and then at -10° overnight whereupon a solid separated. The supernatant liquid was removed at -10° with a dropper and the product recrystallized twice in the same manner, to give the hydrocarbon as small yellow prisms (75 mg.), m. p. 87—88°. Vitamin A_1 (0.85 g.), when treated in the same way, gave anhydrovitamin A_1 (0.16 g.) as pale yellow prisms, m. p. 77°.

3:7-Dimethyl-9-(2:6:6-trimethylcyclohexa-1:3-dienyl)nona-2:4:6:8-tetraenal (Retinene₂). —A solution of vitamin A_2 (0·214 g.; prepared from crystalline methyl ester of the C_{20} dehydroacid) in pentane (200 c.c.) was shaken with manganese dioxide (5 g.) in a stoppered bottle for 18 hours. The product obtained by filtration and evaporation was chromatographed on alumina (100 g.) (deactivated with water, 10%). Elution with pentane-ether (100:1) caused the orange retinene₂ band to move slowly down the column. Elution with this solvent mixture, followed by evaporation of the solvent, gave an orange-red oil (0·176 g.), which was dissolved in pentane (0·9 c.c.) and filtered through a short pad of alumina (0·2 g.) into a small tube. The solution was cooled to -30° and then allowed to stand at -10° overnight. The mother-liquor was removed from the solid retinene₂ by means of a dropper, and the compound was twice recrystallized from warm (30°) pentane by cooling to 0°. Retinene₂ (93 mg.) was obtained as orange-red prisms, m. p. 77—78° (Found : C, 84.75; H, 9.0. C₂₀H₂₆O requires C, 85.05; H, 9.3%). Light absorption in pentane : Maximum, 3880 Å ($\varepsilon = 41,100$). In chloroform : Maximum, 4070 Å ($\varepsilon = 36,500$). Morton (private communication) gives respectively for these solvents : Maximum, 3860 ($\varepsilon = 40,900$) and 4080 Å ($\varepsilon = 38,200$).

A solution of retinene₂ (41 mg.) in warm methanol (2 c.c.) was treated with hydroxylamine acetate [from hydroxylamine hydrochloride (0.5 g.) in water (0.5 c.c.) and potassium acetate (1 g.) in methanol (2.5 c.c.)], and the mixture, after gentle warming, was kept at 0° for 4 hours. The solvent was removed under reduced pressure, and the residue washed with a little cold pentane and then water. The product, recrystallized from methanol, yielded *retinene₂ oxime* (28 mg.) as dark yellow needles, m. p. 141—143° (Found : C, 80.95; H, 9.3. $C_{20}H_{27}ON$ requires C, 80.75; H, 9.15%).

A solution of retinene₂ (22 mg.) in methanol (1 c.c.) was treated with a few drops of 2: 4-dinitrophenylhydrazine sulphate reagent [2: 4-dinitrophenylhydrazine (2 g.) in methanol (100 c.c.) containing sulphuric acid (7 c.c.)]. Water and benzene were quickly added, and the organic layer washed with water, dried (Na₂SO₄), and evaporated. The product was chromatographed on alumina (100 g.) (deactivated with water, 10%), and the deep red band eluted with benzene. After removal of solvent the residue was recrystallized by dissolving it in ethyl acetate at 20° and partly evaporating (and hence cooling) the solvent under reduced pressure. Retinene₂ 2: 4-dinitrophenylhydrazone was obtained as violet-black needles, m. p. 197—199° (Found: C, 67·3; H, 6·7. C₂₆H₃₀O₄N₄ requires C, 67·55; H, 6·55%).

A solution of retinene₂ 2 : 4-dinitrophenylhydrazone (1.001 mg.) in chloroform (50 c.c.) had $E_{1 \text{ cm.}}^{1\%} = 1000$ at 4620 Å. After being heated under reflux for 30 minutes, the solution showed maximal absorption at 4470 Å with $E_{1 \text{ cm.}}^{1\%} = 866$. From a similar experiment employing ethyl acetate as solvent, a crystalline *substance* was isolated with m. p. 163—167° (Found : C, 67.35; H, 6.8. C₂₆H₃₀O₄N₄ requires C, 67.55; H, 6.55%). The absorption maximum of this material in ethanol solution was at 4480 Å. Morton, Salah, and Stubbs (*loc. cit.*) give m. p. 160—161°, and Professor Morton (private communication) has informed us that this product, which was believed to be the "normal" derivative of retinene₂, shows maximal light absorption at 4450 Å in ethanol solution.

Retinene₁ Oxime and 2: 4-Dinitrophenylhydrazone.—Crystalline retinene₁ (0.3 g.) was prepared from vitamin A₁ (0.825 g.) and manganese dioxide (20 g.) in pentane (250 c.c.) as described above for retinene₂. The aldehyde was obtained as orange prisms, m. p. 64—65°. Retinene₁ oxime was prepared in the same way as retinene₂ oxime; it crystallized from methanol as short orange-yellow needles, m. p. 134—136° (Found : C, 80.1; H, 9.8. C₂₀H₂₉ON requires C, 80.25; H, 9.75%). The 2: 4-dinitrophenylhydrazone separated from ethyl acetate as deep purple needles, m. p. 215°.

The authors are greatly indebted to Dr. H. M. Wuest, Warner Institute for Therapeutic Research, New York, for a generous gift of vitamin A_1 acid, and to Dr. O. Isler, Hofmann-La Roche and Co., Basle, for kindly providing vitamin A_1 acetate. They thank Professor R. A. Morton, F.R.S., and Dr. E. M. Shantz for providing unpublished information, and Dr. M. St. C. Flett of Imperial Chemical Industries Limited, Dyestuffs Division, for some preliminary infra-red measurements on anhydro-vitamin A_2 . Dr. G. D. Meakins, of this Department, determined the remainder of the infra-red spectra on the Perkins-Elmer instrument made available through the generosity of the Rockefeller Foundation. One of the authors (J. C. H.) is indebted to the Department of Scientific and Industrial Research for a Maintenance Grant.

THE UNIVERSITY, MANCHESTER, 13.

[Received, March 20th, 1952.]